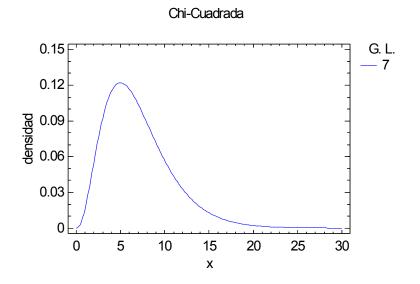
PRUEBA DE HIPOTESIS ESTADISTICA PARA UNA DESVIACION ESTANDAR POBLACIONAL

Dr. Porfirio Gutiérrez González pgutierrezglez@gmail.com

Distribución ji-cuadrada

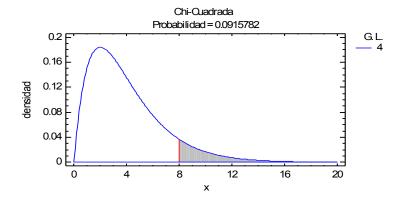
$$f(x) = \begin{cases} \frac{x^{(\frac{v}{2})-1}e^{-\frac{x}{2}}}{2^{\alpha}\Gamma(\frac{v}{2})}, & 0 \leq x < \infty \\ 0, & en \ cualquier \ otro \ caso \end{cases}$$


$$\chi^{2} = \frac{(n-1)S^{2}}{\sigma^{2}}$$

$$g_{0.09}$$

$$g_{0.09}$$

$$g_{0.09}$$


$$g_{0.09}$$

Si S^2 es la varianza de una muestra aleatoria de tamaño n tomada de una población normal que tiene la varianza σ^2 , entonces el estadístico

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

Tiene una distribución ji-cuadrada con u=n-1 grados de libertad

PRUEBA DE HIPOTESIS PARA UN VALOR DE UNA DESVIACION ESTANDAR POBLACIONAL

$$H_0: \sigma = \sigma_0$$

$$\mathsf{H}_{\mathsf{A}}: \sigma \neq \sigma_{\mathbf{0}}$$

$$\alpha = 0.05$$

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

 $\alpha > valor de P$ se rechaza la Hipotesis Nula

Ejemplo. Los siguientes datos representan las edades de defunción por la enfermedad de células falciformes. Una muestra de 50 pacientes proporciona las siguientes edades en años:

15.5	2.0	45.1	1.7	8.0	1.1	18.2	9.7	28.1	18.2
27.6	45	1.0	66.4	2.0	67.4	2.5	61.7	16.2	31.7
6.9	13.5	1.9	31.2	9.0	2.6	29.7	14.4	13.5	2.6
20.7	30.9	36.6	1.1	23.6	0.9	7.6	23.5	6.3	40.2
23.7	4.8	33.2	27.1	36.7	3.2	38	3.5	21.8	2.4

$$H_0: \sigma = 20$$

H_Δ:*σ*≠ 20

EJEMPLO

Para el ejemplo de las edades, se espera que la desviación estándar poblacional sea 20.

$$H_0: \sigma = 20$$

Recuenton=50Desviación EstándarS=17.81Varianza=317.44

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

$$\chi^2 = \frac{(49)(317.44)}{400} = 38.85$$

$$P[\chi^2 > 38.85] = 0.3015$$

$$\alpha$$
=0.05

El valor de P=0.3015>0.05, por lo tanto no se puede rechazar la hipótesis nula. Lo que significa que la desviación estándar es de 20.

Intervalo de confianza para la varianza $100*(1-\alpha)$

Recuento	n=50
Desviación Estándar	S=17.81
Varianza	=317.44

$$\upsilon = (n-1) = 50 - 1 = 49 \qquad \chi_{0.025, 49}^2 = 71.42 \qquad \chi_{0.975, 7}^2 = 31.56$$

$$\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}, \upsilon}^2} < \sigma^2 < \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}, \upsilon}^2}$$

$$\frac{49 * 317.44}{71.42} < \sigma^2 < \frac{49 * 317.44}{31.56}$$

$$221.41 < \sigma^2 < 492.84$$

$$14.88 < \sigma < 22.20$$